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Listeria monocytogenes is a facultative intracellular pathogen that escapes from phagosomes and grows in the cytosol of infected
host cells. Most of the determinants that govern its intracellular life cycle are controlled by the transcription factor PrfA, includ-
ing the pore-forming cytolysin listeriolysin O (LLO), two phospholipases C (PlcA and PlcB), and ActA. We constructed a strain
that lacked PrfA but expressed LLO from a PrfA-independent promoter, thereby allowing the bacteria to gain access to the host
cytosol. This strain did not grow efficiently in wild-type macrophages but grew normally in macrophages that lacked ATG5, a
component of the autophagy LC3 conjugation system. This strain colocalized more with the autophagy marker LC3 (42% � 7%)
at 2 h postinfection, which constituted a 5-fold increase over the colocalization exhibited by the wild-type strain (8% � 6%).
While mutants lacking the PrfA-dependent virulence factor PlcA, PlcB, or ActA grew normally, a double mutant lacking both
PlcA and ActA failed to grow in wild-type macrophages and colocalized more with LC3 (38% � 5%). Coexpression of LLO and
PlcA in a PrfA-negative strain was sufficient to restore intracellular growth and decrease the colocalization of the bacteria with
LC3. In a cell-free assay, purified PlcA protein blocked LC3 lipidation, a key step in early autophagosome biogenesis, presumably
by preventing the formation of phosphatidylinositol 3-phosphate (PI3P). The results of this study showed that avoidance of au-
tophagy by L. monocytogenes primarily involves PlcA and ActA and that either one of these factors must be present for L. mono-
cytogenes growth in macrophages.

Listeria monocytogenes is a Gram-positive facultative intracellu-
lar bacterial pathogen that has been used for decades as a model

organism for studying basic aspects of host-pathogen interactions
(1–3). Subsequent to internalization by macrophages, the bacteria
escape from phagosomes and access the host cytosol, a process
that requires the pore-forming cytolysin listeriolysin O (LLO) (4).
Two other virulence factors, a phosphatidylinositol-specific phos-
pholipase C (PlcA) and a broad-range phospholipase C (PlcB),
also participate in the escape from phagosomes (5–7). L. monocy-
togenes then grows rapidly in the host cytosol and expresses high
levels of the surface protein ActA. ActA recruits host proteins (e.g.,
the Arp2/3 complex and Ena-VASP proteins) that mediate actin
polymerization and allow bacteria to move inside host cells and to
spread from cell to cell (8). Most of the virulence factors that play
a role in the intracellular life cycle of L. monocytogenes (e.g., ActA,
LLO, PlcA, and PlcB) are under the control of the Crp family
member transcription factor PrfA (9, 10). Although the PrfA regu-
lon is absolutely required for L. monocytogenes pathogenesis, it is
not clear which PrfA-dependent factors contribute to growth of L.
monocytogenes in the macrophage cytosol.

Autophagy is a catabolic process that targets intracellular ma-
terial to the lysosomal pathway for degradation and recycling (11).
Autophagy also plays a role in both innate and adaptive host im-
munity and is a cell-autonomous innate defense mechanism that
directly controls the replication of intracellular microbes (12).
Macroautophagy sequesters invading microbes in double-mem-
brane vesicles called autophagosomes and targets these microbes
for lysosomal degradation. An essential step in macroautophagy is
cleavage and coupling of LC3 proteins to phosphatidylethano-
lamine (PE) on early autophagosome structures. LC3-PE (LC3-II)
then interacts with adaptor proteins that recognize microbes ear-

marked for autophagic degradation. Importantly, the class III
phosphatidylinositide 3-kinase, VPS34, catalyzes the synthesis of
phosphatidylinositol 3-phosphate (PI3P) by the phosphorylation
of phosphatidylinositol (PI) and plays a central role in the regula-
tion of autophagosome formation and autophagic flux (13). Some
components of the autophagy machinery also contribute to anti-
bacterial defenses by mechanisms that do not rely on autophago-
some formation, such as LC3-associated phagocytosis (LAP) (14).
LAP is a process at the convergence of phagocytosis and au-
tophagy during which LC3 is directly conjugated to single-mem-
brane phagosomes in order to promote acidification and fusion
with lysosomes (15). Not surprisingly, many pathogens have ad-
opted strategies to interfere with or exploit the autophagy machin-
ery to promote pathogenesis (16–18).
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L. monocytogenes replicates similarly in wild-type and au-
tophagy-defective bone marrow-derived macrophages (BMDM)
(19), suggesting that the bacteria can circumvent the host cell
autophagy machinery (20). One proposed mechanism is that L.
monocytogenes avoids autophagic recognition by recruiting host
proteins to the bacterial surface using either ActA or InlK (21, 22).
However, InlK is not expressed during in vitro cell infection (21),
and the effect of ActA on LC3 recruitment requires that bacterial
protein synthesis be inhibited (14, 23, 24), suggesting that addi-
tional factors are involved. L. monocytogenes phospholipases C
(PLCs) also contribute to autophagy evasion, but the mechanism
has remained elusive (19, 23, 25). A recent study suggested that
PLCs prevent autophagy targeting of L. monocytogenes by reduc-
ing autophagic flux, depleting host PI3P, and inhibiting the mat-
uration of preautophagosomal structures (26). Importantly, PlcA
seemed to be more important than PlcB in mediating the accumu-
lation of cytoplasmic granules with characteristics of preautopha-
gosomal structures during L. monocytogenes infection (26). The
relative contribution of ActA, PlcA, and PlcB, either alone or in
combination, in evasion of the autophagy pathway by L. monocy-
togenes is still ambiguous. Furthermore, it is still unclear to what
extent autophagy avoidance contributes to growth of L. monocy-
togenes in the host cell. This study clearly demonstrates that au-
tophagy avoidance is required for L. monocytogenes replication in
macrophages and is mediated by either PlcA or ActA.

MATERIALS AND METHODS
Bacterial strains, growth medium, and cell culture. L. monocytogenes
strains used in this study are listed in Table 1. Strains were grown in brain
heart infusion (BHI) medium at 30°C overnight prior to all experiments.
Bone marrow-derived macrophages (BMDM) were prepared and cul-
tured using standard protocols (27). Atg5flox/flox (28), Atg5flox/flox-Lyz-Cre
(29), and green fluorescent protein (GFP)-conjugated LC3 (30) mice were
described previously. HEK293T cells were grown at 37°C and 5% CO2 in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (FBS).

Deletions of hly and actA in �prfA and �plcA backgrounds, respec-

tively, were achieved as previously reported (31, 32). Plasmids pPL2 (33),
pPL2-PactA-plcB (pERS1018) (34), pHpPL3 (35), and pHpPL3-hly
(cLLO) (35) have already been described. To generate pHpPL3-hly (no
terminator), the 5= untranslated region (5=UTR) and the coding sequence
of hly were amplified without transcriptional terminator by PCR (primers
hly-FWD and hlynoTT-REV), digested with EagI and PstI, and inserted
into pHpPL3 downstream of the hyper-Pspac promoter (Phyper). The 5=
UTR and the coding sequence of plcA were then amplified by PCR (prim-
ers plcA-FWD and plcA-REV), digested with EcoRV and SalI, and inserted
in pHpPL3-hly (no terminator) in order to generate pHpPL3-hly-plcA
(cLLO cPlcA). For genetic complementation experiments, actA and plcA
were amplified by PCR (primers actAcomp-FWD and actAcomp-REV
and primers plcAcomp-FWD and plcA-REV, respectively) and inserted
into pPL2 with their native promoters. The actA amplicon was digested
with EagI and XhoI, and the plcA amplicon was digested with EcoRV and
SalI. Primers used in this study are listed in Table 2. Inserts were se-
quenced, transformed into Escherichia coli SM10, and conjugated into L.
monocytogenes strains.

Intracellular growth curves. Intracellular growth curves were per-
formed as previously described (36). Briefly, BMDM were infected at a
multiplicity of infection (MOI) of 0.25 (1 bacterium per 4 macrophages),
which results in the infection of approximately 8% of the cells. Thirty
minutes after infection, cells were washed and fresh medium was added.
At 1 h postinfection, 50 �g/ml of gentamicin was added to the medium in
order to kill extracellular bacteria. Replication was quantified by enumer-
ating intracellular CFU. When specified, 5 mM 3-methyladenine (3-MA)
(Sigma, St. Louis, MO) was added to infected cells at 1 h postinfection.

Immunofluorescence, microscopy, and image analysis. GFP-LC3
BMDM were infected at an MOI of 0.4 (2 bacteria per 5 macrophages),
resulting in the infection of approximately 13% of the cells, as described
above. When specified, 5 mM 3-MA was added to infected cells at the time
of infection. At various time points, coverslips were washed twice with
phosphate-buffered saline (PBS), fixed in 4% paraformaldehyde for 15
min, and incubated for at least 30 min in permeabilization/blocking buf-
fer (PB buffer; PBS containing 2% bovine serum albumin [BSA] and
either 0.1% saponin or 0.1% Triton X-100). Coverslips were then incu-
bated for 1 h in PB buffer containing mouse anti-GFP antibody (no.
11814460001; 1:200 dilution; Roche, Indianapolis, IN) and/or rabbit anti-
Listeria antibody (no. 223021; 1:1,000 dilution; BD Biosciences, San Jose,
CA). Coverslips were then washed 6 times and incubated for 45 min in PB
buffer containing Alexa Fluor 488 or 647 goat anti-mouse IgG (1:2,000
dilution; Invitrogen, Grand Island, NY), rhodamine Red-X goat anti-rab-
bit IgG (1:2,000 dilution; Invitrogen) and Alexa Fluor 647 rat anti-mouse
LAMP1 (no. 121609; 1:250 dilution; BioLegend, San Diego, CA), when
required. Coverslips were washed 6 times and mounted in ProLong Gold
antifade reagent with 4=,6-diamidino-2-phenylindole (DAPI) (Invitro-
gen). Cells were imaged with an Olympus IX71 epifluorescence micro-
scope using the 100� objective. Several frames per time point were ran-
domly selected, and images were collected and color combined using
MetaMorph software (Universal imaging). Images from at least 3 inde-

TABLE 1 L. monocytogenes strains used in this study

Strain Description Reference

10403S Wild type 62
DP-L2261 �hly 32
DH-L991 �hly cLLO (pHpPL3-hly) 35
DP-L4317 �prfA 63
DP-L6170 �hly �prfA This study
DP-L6172 �hly �prfA pHpPL3 This study
DP-L6173 �hly �prfA cLLO (pHpPL3-hly) This study
DP-L6174 �hly �prfA pHpPL3-hly (no terminator) This study
DP-L6175 �hly �prfA cLLO cPlcA

(pHpPL3-hly-plcA)
This study

DP-L1552 �plcA 7
DP-L1935 �plcB 6
DP-L3078 �actA 31
DP-L1936 �plcA �plcB 6
DP-L6176 �plcA �plcB pPL2-plcA This study
DP-L6177 �plcA �plcB pPL2-PactA-plcB (pERS1018) This study
DP-L6171 �actA �plcA This study
DP-L6178 �actA �plcA pPL2-actA This study
DP-L6179 �actA �plcA pPL2-plcA This study
DP-L4066 �actA �plcB 64
DP-L2160 �actA �plcA �plcB This study

TABLE 2 Primers used in this study

Primer Sequence (5= to 3=)a

hly-FWD ATATATCGGCCGATAAAGCAAGCATATAATATTG
CGTT

hlynoTT-REV ATATATCTGCAGTTATTCGATTGGATTATCTACTTT
ATTA

plcA-FWD ATATATGATATCATATACTAATCAAAGGAGGGGGC
plcA-REV ATATATGTCGACAGAGTTAGTATATGGTTCCGAGG
actAcomp-FWD ATATATCGGCCGGGGAAGCAGTTGGGGTTAACT
actAcomp-REV ATATATCTCGAGCTCACTTTTTTCTTTCGTTCTG

TGTT
plcAcomp-FWD ATATATGATATCGCTATCCTTTTGACGTCATTAACA
a Underlining indicates restriction enzyme sites.
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pendent experiments were analyzed using ImageJ (National Institutes of
Health), and a minimum of 100 bacteria, or GFP-LC3� bacteria, were
scored for colocalization with GFP-LC3 or LAMP1, respectively, for each
tested condition. Images are representative of observed results.

Protein purification. Genes plcA and plcB were cloned into vector
pTYB21 (New England BioLabs, Ipswich, MA). Recombinant proteins
were expressed in E. coli strain BL21-AI (Life Technologies, Grand Island,
NY). Bacteria were grown to an optical density of about 0.6, and protein
expression was induced with both L-arabinose and IPTG, at final concen-
trations of 0.2% of L-arabinose and 0.4 mM isopropyl-�-D-thiogalacto-
pyranoside (IPTG). Bacteria were shaken at 225 rpm and 20°C for 6 h
before harvest. Target proteins were expressed with an N-terminal intein
tag, which harbored a chitin-binding domain (CBD) for affinity purifica-
tion. Protein purification was undertaken with protocols suggested by the
manufacturer (37). Ultimately, the desired protein was eluted from chitin
resin with the native N terminus following thiol-induced intein self-splic-
ing on the column. The excessive thiol in the protein elute was removed by
dialysis with storage buffer (20 mM HEPES, 150 mM NaCl [pH 8.5]).
Purified proteins were aliquoted and stored at 4°C or frozen with liquid
nitrogen in 20% glycerol and stored at �80°C. All of the purification
procedures were undertaken at 4°C. Site-directed point mutation of
proteins [PlcA(W49A) and PlcB(D55N)] was conducted with the
QuikChange Lightning site-directed mutagenesis kit (Agilent Technolo-
gies, Inc., Santa Clara, CA). The biochemical properties of PlcA(W49A)
have previously been described (38). The activity of the PlcB(D55N) mu-
tant was 43-fold lower than that of wild-tye (WT) PlcB when 5 mM di-
hexanoylphosphatidylcholine was used as a substrate in 20 mM HEPES
buffer, 150 mM NaCl, 0.1 mg/ml BSA (pH 6) and with a method based on
the detection of inorganic phosphate that has been previously described
(39).

Phospholipase treatment of membrane. A 25,000 � g pellet mem-
brane, enriched in lipidation activity, was collected by differential centrif-
ugation and suspended in B88 buffer as previously described (40). For
treatment with PlcA and PlcA(W49A), the membrane fraction was di-
luted to a final concentration of 0.2 mg/ml of phosphatidylcholine (PC)
content and incubated with the indicated concentrations of enzymes. For
treatment with PlcB and PlcB(D55N), the membrane fraction was diluted

and incubated with enzymes, as described above, but 50 �M zinc acetate
was included to enhance PlcB activity (41). The mixtures were then incu-
bated at 30°C for 1 h and pelleted at 25,000 � g. Finally, the membrane was
washed once with B88 buffer, pelleted again, and used for lipidation reac-
tions.

Cell-free LC3 lipidation and immunoblotting. The lipidation and
immunoblotting procedure was carried out as previously described (40),
with subtle modifications. In brief, cytosol (2-mg/ml final concentration)
collected from starved HEK293T cells, an ATP regeneration system (40
mM creatine phosphate, 0.2 mg/ml creatine phosphokinase, and 1 mM
ATP), GTP (0.15 mM), T7-LC3 (amino acids 1 to 120), and the phospho-
lipase-treated membrane fractions (0.2-mg/ml PC content, final concentra-
tion) were incubated in a final volume of 30 �l. Reactions were performed at
30°C for 1 h, and LC3 lipidation was detected by immunoblotting as previ-
ously described (40, 42, 43). Antibodies included mouse anti-PDI (Enzo
Life Sciences, Farmingdale, NY), mouse anti-GST (Santa Cruz, Dallas,
TX), mouse anti-T7 (EMD, Billerica, MA), rabbit anti-ERGIC53 (Sigma),
and rabbit anti-VPS34 (Cell Signaling, Boston, MA).

Quantification of phospholipids. For PC and PE measurements, the
25,000 � g membrane fraction was collected, and phospholipase diges-
tions were performed as described above. The digested membranes were
collected and incubated with cytosol, ATP regeneration system, GTP, and
T7-LC3, as described above. The membranes were then collected by cen-
trifugation at 25,000 � g, and suspended in B88 buffer. Membrane PC and
PE levels were measured as previously described (40, 43). For PI3P mea-
surement, the 25,000 � g membrane fraction was collected, digested with
phospholipases, and incubated with cytosol, ATP regeneration system,
GTP and T7-LC3, as described above, in the presence of 2 �M GST-FYVE.
GST-FYVE binds specifically to PI3P (40). The membrane fraction was
collected by pelleting, washed once with B88 buffer, and collected again
for immunoblot analysis of the bound GST-FYVE level.

Statistical analysis. Statistical analyses were carried out with the
GraphPad Prism software (v.6.02). CFU were transformed to base 10
logarithm values before being used for statistical analyses. Statistical tests
used for the analysis of each experiment are specified in the figure legends.

Ethical statement. This study was performed in accordance with the
guidelines in the Guide for the Care and Use of Laboratory Animals of the

FIG 1 Intracellular growth of a �prfA strain expressing LLO. Kinetics of intracellular growth for wild-type, �hly �prfA (with the empty integrated vector
pHpPL3), and �hly �prfA cLLO in Atg5�/� BMDM (A), Atg5�/� BMDM (B), B6 BMDM (C), and B6 BMDM exposed to 3-MA (D) are shown. Results are
expressed as means and standard deviations obtained from at least 3 independent experiments.
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National Institutes of Health (44). Protocols were approved by the Animal
Care and Use Committee of the University of California, Berkeley.

RESULTS
PrfA is required for L. monocytogenes growth and autophagy
evasion in BMDMs. We hypothesized that L. monocytogenes ac-
tively evades autophagy during infection by using PrfA-depen-
dent factors. To investigate the impact of autophagy on the ability
of L. monocytogenes to grow in C57BL/6 (B6) BMDM in the ab-
sence of PrfA-dependent virulence factor expression, we adopted
a strategy previously described by Birmingham et al. (23) based on

the use of a constitutively expressed allele of the gene encoding
LLO (hly) (Phyper-hly; cLLO). Integration of the Phyper-hly allele in
the genome of a �hly strain resulted in a strain that replicated at
the same rate as the wild-type (WT) strain in BMDM (see Fig. S1
in the supplemental material). In contrast, introduction of this
allele into a double hly and prfA deletion mutant resulted in a
strain that was hemolytic (data not shown) but did not grow in
BMDM (Fig. 1). Microscopic analysis revealed that most of the
macrophages infected with the �hly �prfA cLLO strain showed
only one or very few bacteria, although a small subset (�8%)
contained actively replicating bacteria. Strikingly, we observed

FIG 2 Colocalization of LC3 with a �prfA strain expressing LLO. (A) Representative micrographs of GFP-LC3 BMDM infected for 2 h with 10403S, �hly �prfA,
and �hly �prfA cLLO. Infected cells were stained for L. monocytogenes (red), GFP-LC3 (green), and DNA (blue). (B) Colocalization kinetics of GFP-LC3 with
WT, �hly �prfA (pHpPL3), and �hly �prfA cLLO. Proportions of GFP-LC3� bacteria are expressed as a percentage of total intracellular L. monocytogenes. The
�hly �prfA cLLO strain showed increased colocalization with LC3 in comparison to the WT strain from 2 to 4 h postinfection (P 	 0.0001 for each time points;
two-way ANOVA with Dunnett’s posttest). (C) Effect of 3-MA on the colocalization of GFP-LC3 with WT and �hly �prfA cLLO at 2 h postinfection. Relevant
statistically significant differences are indicated (**, P 	 0.01; ***, P 	 0.001 [ANOVA with Tukey’s posttest]). Results are expressed as means and standard
deviations obtained from at least 3 independent experiments. Bars 
 5 �m.
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that the �hly �prfA cLLO strain replicated at a rate similar to that
of the WT strain in BMDM from Atg5flox/flox-Lyz-Cre mice (re-
ferred to here as Atg5�/� macrophages) (Fig. 1A and B), suggest-
ing that the intracellular growth of this strain was constrained by
the host autophagy machinery. In addition, the �hly �prfA cLLO
strain grew in B6 BMDM exposed to 5 mM 3-MA, a molecule that
blocks LC3 lipidation by inhibiting type III phosphatidylinositol
3-kinases (Fig. 1C and D).

To directly evaluate targeting by the autophagy machinery,
BMDM derived from GFP-LC3 transgenic mice were infected
with L. monocytogenes strains, and the association of bacteria with
LC3 was examined at defined times (1 to 5 and 8 h postinfection)
(Fig. 2A and B). As previously described (14, 19), the WT strain
transiently colocalized with LC3 early in infection (i.e., peak at 1 h
postinfection), while a �hly mutant (represented here by the �hly
�prfA mutant) failed to colocalize with LC3 (19). The �hly �prfA
cLLO strain showed increased colocalization with LC3 in compar-
ison to the WT strain from 2 to 4 h postinfection (Fig. 2B), and
colocalization was reduced by 3-MA (Fig. 2C). By 5 h, colocaliza-
tion with LC3 decreased significantly. GFP-LC3-II proteins are
ultimately digested by the lysosomal degradative pathway (30),
which may explain the decreased colocalization of GFP-LC3 with
the �hly �prfA cLLO strain as a function of time. Indeed, the

proportion of LC3� �hly �prfA cLLO bacteria that were also pos-
itive for the lysosomal marker LAMP1 was 77% � 6% at 2 h
postinfection (see Fig. S2 in the supplemental material). Overall,
these results strongly suggested that evasion of the autophagy
pathway was essential for bacterial growth in BMDM and that L.
monocytogenes used one or several PrfA-dependent factors to
avoid targeting by the autophagy machinery.

ActA and PlcA interfere with the autophagy pathway. The
PrfA-regulated virulence factors that have been associated with
evasion from the autophagy pathway are ActA, PlcA, and PlcB (20,
22, 26). However, single deletions of each had minimal effects on
the growth of L. monocytogenes in BMDM (Fig. 3). A mutant lack-
ing both PlcA and PlcB grew intracellularly but showed a defect at
5 and 8 h postinfection (Fig. 3A and B). Strikingly, a strain lacking
plcA and actA failed to replicate in BMDM (Fig. 3C and D), but
inhibition of host actin polymerization did not affect the intracel-
lular growth of the �plcA strain (see Fig. S3 in the supplemental
material). In contrast, a �actA �plcB strain grew like the wild type,
and the intracellular replication/survival ability of the �actA
�plcA �plcB mutant was similar to that of the �actA �plcA strain.
The �actA �plcA, �plcA �plcB, and �plcA �plcB �actA strains
replicated efficiently in Atg5�/� macrophages (Fig. 4A, B, and C),
confirming that the intracellular growth defect of these strains is

FIG 3 Intracellular growth of �actA, �plcA, and �plcB strains. (A) Kinetics of intracellular growth for WT, �plcA, �plcB, and �plcA �plcB strains in BMDM. (B)
CFU recovered from BMDM infected with WT, �plcA �plcB, �plcA �plcB pPL2-plcA, and �plcA �plcB pPL2-PactA-plcB organisms for 8 h. Statistically significant
differences between strains are indicated (**, P 	 0.01; ***, P 	 0.001 [one-way ANOVA with Tukey’s posttest]). (C) Kinetics of intracellular growth for WT,
�actA, �actA �plcA, �actA �plcB and �actA �plcA �plcB strains in BMDM. (D) CFU recovered from BMDM infected with WT, �actA �plcA, �actA �plcA
pPL2-actA, and �actA �plcA pPL2-plcA strains for 8 h. Statistically significant differences between strains are indicated (***, P 	 0.001 [one-way ANOVA with
Tukey’s posttest]). Results are expressed as means and standard deviations obtained from at least 3 independent experiments.
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linked to autophagy. In order to determine the direct role of each
virulence factor in autophagy evasion, the association between
bacteria and GFP-LC3 was evaluated at 2 h postinfection (Fig.
4D). While deletion of both actA and plcA significantly increased
colocalization with LC3, no significant increase was observed for
the plcB mutant. Furthermore, deletion of both plcA and actA had
an additive effect on the association of bacteria with GFP-LC3. No
additive effect was observed by combining mutations in plcB with
mutations in actA and plcA. Overall, these results demonstrated
that ActA, PlcA, and, to a much lesser extent, PlcB contributed to
the ability of L. monocytogenes to interfere with autophagy and to
grow in BMDM.

We hypothesized that expression of PlcA in the �hly �prfA
cLLO strain would promote bacterial replication in BMDM. To
test this hypothesis, hly and plcA genes were inserted in tandem,
downstream of the Phyper promoter. The ability of the �hly �prfA
cLLO cPlcA to grow in BMDM was similar to that of the WT strain
(Fig. 5A). Furthermore, the expression of plcA in the �hly �prfA
cLLO strain significantly decreased the association of bacteria with
GFP-LC3, although not to the level of the WT strain (Fig. 5B).
Overall, these results confirmed that PlcA is involved in autophagy
escape and demonstrated that LLO and PlcA are sufficient to pro-
mote the intracellular growth of an L. monocytogenes �prfA strain
in BMDM.

Effect of PlcA and PlcB on in vitro LC3 lipidation, membrane
integrity, and PI3P levels. We next evaluated the ability of PlcA
and PlcB to directly interfere with autophagy induction using a
previously described in vitro assay (40, 45, 46) that monitors the
cleavage and lipidation of the LC3 protein, a key step in early

autophagosome formation. PlcA, PlcB, and mutant controls
[PlcA(W49A), which has impaired interfacial binding to mem-
branes (38), and PlcB(D55N) (see Materials and Methods)] were
expressed, purified, and added to the LC3 lipidation assay. PlcA,

FIG 4 Intracellular growth of �actA, �plcA, and �plcB strains in Atg5�/� BMDM and colocalization with LC3. Kinetics of intracellular growth for WT and �actA
�plcA strains in Atg5�/� (A) and Atg5�/� (B) BMDM are shown. (C) CFU recovered from Atg5�/� and Atg5�/� BMDM infected with WT, �plcA �plcB, �actA
�plcA, and �actA �plcA �plcB strains for 8 h. Statistically significant differences between Atg5�/� and Atg5�/� BMDM are indicated for each strain (*, P 	 0.05;
***, P 	 0.001; unpaired t test). (D) Colocalization of GFP-LC3 with WT, �hly, �plcA, �plcB, �plcA �plcB, �actA, �actA �plcA, �actA �plcB, and �actA �plcA
�plcB strains at 2 h postinfection. Proportions of GFP-LC3� bacteria are expressed as a percentage of total intracellular L. monocytogenes. Statistically significant
differences in comparison to WT, �actA and �plcA strains are indicated by the letters a, b, and c, respectively (P 	 0.05 [one-way ANOVA with Tukey’s posttest]).
Results are expressed as means and standard deviations obtained from at least 3 independent experiments.

FIG 5 Intracellular growth and colocalization with LC3 of a �prfA strain
expressing LLO and PlcA. (A) Kinetic of intracellular growth for WT, �hly
�prfA cLLO, and �hly �prfA cLLO cPlcA strains in BMDM. (B) Quantifica-
tion of GFP-LC3� bacteria for WT, �hly �prfA cLLO, and �hly �prfA cLLO
cPlcA strains expressed as a percentage of total intracellular L. monocytogenes at
2 h postinfection. Significant differences between strains are indicated (**, P 	
0.01; ***, P 	 0.001 [one-way ANOVA with Tukey’s posttest]). Results are ex-
pressed as means and standard deviations obtained from at least 3 independent
experiments.

Mitchell et al.

2180 iai.asm.org May 2015 Volume 83 Number 5Infection and Immunity

http://iai.asm.org


but not PlcA(W49A), strongly inhibited LC3 lipidation in vitro
(Fig. 6A; also, see Fig. S4 in the supplemental material [for quan-
tification]). The inhibition of LC3 lipidation was associated
with a decrease in membrane PI3P as detected by a GST-FYVE
probe (Fig. 6A). Importantly, PlcA-treated membranes re-
mained intact, as revealed by levels of the intraluminal protein
disulfide isomerase (PDI) in the membrane fraction (Fig. 6A).
In contrast, PlcB inhibited LC3 lipidation, but only at higher
concentrations, and inhibition was associated with membrane
damage, as revealed by a decrease in PDI in the membrane fraction
(Fig. 6B). In accordance with the known broad-range activity of PlcB
(41, 47), PC and PE levels were decreased in the membrane frac-
tion treated with PlcB [but not in membrane factions treated with
PlcA, PlcA(W49A), and PlcB(D55N)] (see Fig. S5 in the supple-
mental material). No impact on the levels of the membrane load-
ing control ERGIC-53 or VPS34 was detected (Fig. 6). These re-
sults suggested that PlcA specifically interfered with autophagy by
decreasing PI3P levels, while PlcB interfered with LC3 lipidation
at higher concentrations by affecting membrane integrity.

DISCUSSION

The results of this study support previous observations that L.
monocytogenes utilizes ActA and PLCs to avoid autophagy during
infection of host cells. Here we show that L. monocytogenes lacking
ActA or PlcA grew similarly to wild-type bacteria but that a mu-
tant lacking both ActA and PlcA was targeted by the autophagy
LC3 conjugation system and failed to grow in BMDM macro-
phages. Additionally, purified PlcA prevented the formation of
PI3P and blocked LC3 lipidation in a cell-free assay. Overall, this
study demonstrated that interference with autophagy is required
for L. monocytogenes intracellular growth and depends upon ei-
ther ActA or PlcA.

Previous studies have examined the effects of PlcA on host
phosphoinositide metabolism during infection (48, 49). Tat-
toli et al. (26) showed that L. monocytogenes PLCs are associated
with reduction of host PI3P, a signaling molecule that plays a
critical role in autophagy (13) and is enriched in subcellular
structures where antibacterial autophagy occurs (50). Consid-

ering that PI3P is required for LC3 lipidation (40, 51), we spec-
ulated that PLCs, especially PlcA, decreased LC3 lipidation.
Accordingly, our results are in agreement that PlcA inhibits
autophagy induction by decreasing PI3P levels, most likely by
cleaving PI (5), the substrate of class III PI3Ks (13, 52). How-
ever, it is noteworthy that seven different host polyphosphoi-
nositides are derived from PI that impact functions ranging
from membrane trafficking to actin cytoskeleton dynamics
(53). As a result, pathogens target host cell phosphoinositide
metabolism for many purposes (54, 55), and it is conceivable
that PlcA has multiple effects on host cells by modulating dif-
ferent phosphoinositide pools. Therefore, it is possible that
PlcA acts in a vacuole to counteract autophagy (25) and/or acts
globally to impact both autophagy (26) and/or other functions.
For instance, PlcA activity might affect actin-based motility,
since PI(3,5)P2 and PI(3,4,5)P3 bind to ActA (56, 57).

L. monocytogenes has two PLCs; PlcA is specific for PI, while
PlcB cleaves a broad range of phospholipid substrates but not PI
(5). The role of each PLC in autophagy escape has been difficult to
dissociate (23, 25, 26). The results of this study suggested that PlcB
plays a minor role in autophagy evasion. Purified PlcB inhibited
LC3 lipidation in vitro, but only at concentrations that caused
nonspecific membrane damage. However, the possibility that
PlcB affects autophagy by cleaving PE remains attractive. Indeed,
PE is the phospholipid anchoring LC3 proteins on early autopha-
gosomal structures, and it is possible that PlcB decreases LC3 lipi-
dation by removing PE head groups. Interestingly, the Legionella
pneumophila effector RavZ interferes with autophagy by directly
uncoupling LC3 proteins on autophagosomal membranes (58).
PlcB might also act on later steps of the autophagy pathway, per-
haps mediating bacterial escape from autophagosomes and/or au-
tolysosomes.

It is now established in the literature that both L. monocyto-
genes and Shigella flexneri avoid autophagy in the host cell cytosol
by masking their surfaces (16, 22, 59). During L. monocytogenes
infection, the recruitment of the host Arp2/3 complex and Ena/
VASP proteins by ActA prevents autophagy recognition, but ac-
tin-based motility is not required for autophagy avoidance (22). S.

FIG 6 Effect of PlcA and PlcB on in vitro LC3 lipidation, membrane integrity, and PI3P levels. The membrane fraction was digested with the indicated
concentrations of PlcA and PlcA(W49A) (A) or PlcB and PlcB(D55N) (B). The postdigestion membranes were then collected and subjected to in vitro LC3
lipidation assay and PI3P measurement followed by immunoblotting with the indicated antibodies. Membrane integrity was evaluated by measuring the levels
of the intraluminal protein disulfide isomerase (PDI) in the membrane fraction. ERGIC-53 is the membrane loading control. Membrane levels of VPS34 were
also evaluated.
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flexneri escapes autophagy by secreting IcsB, a protein that com-
petitively inhibits the binding of ATG5 to VirG/IcsA, a bacterial
protein required for actin-based motility (59). However, recent
data suggest that IcsB acts by inhibiting LAP and/or LC3 recruit-
ment to vacuolar membrane remnants early during infection (60).
The LAP pathway also targets L. monocytogenes (14), and the in-
duction of autophagy by L. monocytogenes requires the pore-
forming cytolysin LLO (14, 19, 26). Therefore, it is possible that L.
monocytogenes, like S. flexneri, is targeted by autophagy exclusively
in a damaged phagosome, not free in the cytosol.

Although it is clear that L. monocytogenes requires either ActA
or PlcA to grow in host cells, the contribution of each is not yet
fully appreciated. The simplest model is that each determinant
acts at a different time and place: PlcA acts in a phagocytic vacuole,
and ActA acts in the cytosol. However, if this model was correct,
one would predict that single mutants would also exhibit bacterial
growth defects and that the contribution of PlcA and ActA would
be additive, not synergistic. Since both PlcA and ActA may also
contribute to vacuolar escape (5, 61), perhaps the double mutant
escapes more slowly, thereby allowing time for the LAP pathway
to contain the infection. Alternatively, the autophagy machinery
may be recruited by membrane remnants or directly at the bacte-
rial surface. In these scenarios, ActA might block autophagy rec-
ognition while PlcA interferes with autophagy flux locally and/or
globally. Future studies using real-time imaging and electron mi-
croscopy are required to better define the relationship between
escape from the phagosome, membrane remnants, and the re-
cruitment of the autophagy machinery to L. monocytogenes during
infection.
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